face2face.imports.create_network.hopping_time_networks¶
-
face2face.imports.create_network.
hopping_time_networks
(Data, minutes=1000)¶ Create multiple Networkx Graphs and DataFrames
Creating multiple Networkx Graphs and DataFrames based on the given hopping time interval.
- Parameters
Data (Data) – Data Object that contains Tij- and Metadata for a data set.
minutes (int) – The interval time in which the Networkx Graphs should be splitted.
- Returns
network_list (list) – A list of all networkx Graphs for the given interval.
df_list (list) – A list of all dataframes for the given interval.
Examples
In this example the full dataframe got splitted in dataframes and networks with time windows of 40 seconds (2/3 minutes). The output in this case describes the network and the dataframe for the first 40 seconds in the original dataframe.
>>> attr_list = ["ID", "Age", "Sex"] >>> test_df = Data(path_tij="face2face/data/Test/tij_test.dat", separator_tij="\\t", >>> path_meta="face2face/data/Test/meta_test.dat", separator_meta = "\\t", >>> meta_attr_list = attr_list) >>> test_network_list, test_df_list = hopping_time_networks(test_df, minutes=2/3) >>> print(test_network_list[0].edges) [(0, 1), (1, 2), (1, 3), (2, 3)] >>> print(test_network_list[0].nodes) [0, 1, 2, 3] >>> for i in test_network_list[0].nodes: >>> print(test_network_list[0].nodes[i]) {'Age': 1.0, 'Sex': 'F'} {'Age': 0.0, 'Sex': nan} {'Age': nan, 'Sex': 'M'} {'Age': 0.0, 'Sex': 'F'} >>> print(test_df_list[0]) Time i j TimeGroup 0 20 0 1 0.0-40.0 1 40 1 2 0.0-40.0 2 40 1 3 0.0-40.0 3 40 2 3 0.0-40.0
See also
face2face.imports.create_network.create_sliding_time_networks()
,face2face.imports.create_network.event_time_networks()