face2face.statistics.network_quantities.clustering_coefficient¶
-
face2face.statistics.network_quantities.
clustering_coefficient
(network)¶ Calculate the global Clustering Coefficient
Calculating the global Clustering Coefficient C for a given network
\[\langle L_i \rangle = p \frac{k_i(k_i - 1)}{2}\]\[C_i = \frac{2 \langle L_i \rangle}{k_i(k_i - 1)} = p = \frac{\langle k \rangle}{N}\]- Parameters
network (networkx Graph) – A graph with a specified degree sequence. Nodes are labeled based on the imported data set.
- Returns
c – Contains the Clustering Coefficient for the network.
- Return type
float
References
- 1
Barabasi, Albert-Laszlo. (2013). Network science. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 371. 20120375. 10.1098/rsta.2012.0375.
Examples
>>> attr_list = ["ID", "Age", "Sex"] >>> test_df = Data(path_tij="face2face/data/Test/tij_test.dat", separator_tij="\t", >>> path_meta="face2face/data/Test/meta_test.dat", separator_meta="\t", >>> meta_attr_list=attr_list) >>> test_network = create_network_from_data(test_df) >>> C = clustering_coefficient(test_network) >>> print(C) 0.2